Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 14(8)2022 08 15.
Article in English | MEDLINE | ID: covidwho-1987998

ABSTRACT

The envelope (E) protein of the avian coronavirus infectious bronchitis virus (IBV) is a small-membrane protein present in two forms during infection: a monomer and a pentameric ion channel. Each form has an independent role during replication; the monomer disrupts the secretory pathway, and the pentamer facilitates virion production. The presence of a T16A or A26F mutation within E exclusively generates the pentameric or monomeric form, respectively. We generated two recombinant IBVs (rIBVs) based on the apathogenic molecular clone Beau-R, containing either a T16A or A26F mutation, denoted as BeauR-T16A and BeauR-A26F. The replication and genetic stability of the rIBVs were assessed in several different cell types, including primary and continuous cells, ex vivo tracheal organ cultures (TOCs) and in ovo. Different replication profiles were observed between cell cultures of different origins. BeauR-A26F replicated to a lower level than Beau-R in Vero cells and in ovo but not in DF1, primary chicken kidney (CK) cells or TOCs. Genetic stability and cytopathic effects were found to differ depending on the cell system. The effect of the T16A and A26F mutations appear to be cell-type dependent, which, therefore, highlights the importance of cell type in the investigation of the IBV E protein.


Subject(s)
Coronavirus Infections , Gammacoronavirus , Infectious bronchitis virus , Animals , Chickens , Chlorocebus aethiops , Coronavirus Infections/veterinary , Infectious bronchitis virus/genetics , Mutation , Vero Cells
2.
Appl Biosaf ; 25(2): 83-89, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-831827

ABSTRACT

BACKGROUND: The recent reclassification of formaldehyde as a presumed carcinogen prompted the investigation into the comparative efficacy of hydrogen peroxide as a fumigant in microbiological safety cabinets. INTRODUCTION: The aim of the study was to quantify the biocidal efficacy of formaldehyde fumigation, including variables such as exposure time and concentration, and then to compare this to the biocidal efficacy achieved from a hydrogen peroxide vapor fumigation system. The study also investigated the ability of both fumigants to permeate the microbiological safety cabinet (MBSC), including the workspace, under the work tray, and after the HEPA filters. Furthermore, the effect of organic soiling on efficacy was also assessed. Infectious bronchitis virus (IBV) was used as the biological target to develop this study model. METHODS: A model using IBV was developed to determine the efficacy of formaldehyde and hydrogen peroxide as fumigants. Virus was dried on stainless steel discs, and variables including concentration, time, protein soiling, and location within an MBSC were assessed. RESULTS: It was demonstrated that formaldehyde fumigation could achieve a 6-log reduction in the titer of the virus throughout the cabinet, and high protein soiling in the presentation did not affect efficacy. Appropriate cycle parameters for the hydrogen peroxide system were developed, and when challenged with IBV, it was shown that vaporized hydrogen peroxide could achieve an equal 6-log titer reduction as formaldehyde within the cabinet workspace and overcome the presence of soiling. CONCLUSION: Hydrogen peroxide was demonstrated to be a viable alternative to formaldehyde under most situations tested. However, the hydrogen peroxide system did not achieve an equal titer reduction above the cabinet's first HEPA filter using the cabinet workspace cycle, and further optimization of the hydrogen peroxide cycle parameters, including pulsing of the cabinet fans, may be required to achieve this.

SELECTION OF CITATIONS
SEARCH DETAIL